The Role of Molecular Diagnostics in Characterizing Cutaneous Lymphoproliferative Disorders

Uma Sundram, MD, PhD
Professor of Pathology
Oakland University William Beaumont School of Medicine
Beaumont Health Systems, Royal Oak, MI
September 27, 2019
Outline

- T cell clonality and usefulness in early mycosis fungoides or Sézary syndrome
 - Dual TCR PCR using the gamma gene locus
 - The usefulness of studying TCR beta separately or in conjunction with TCR gamma
Outline

• B cell clonality and usefulness in low grade B cell lymphomas
 – IgH and IgK in tandem
 – Multiple Biopsies
Introduction

• The diagnosis of cutaneous lymphoma is not always straightforward, as there can be significant overlap with reactive entities
• Careful correlation with clinical features is essential for an accurate diagnosis
Introduction

• In the context of mycosis fungoides and Sézary syndrome, both immunohistochemical approaches and molecular studies can be used as ancillary diagnostic methods.

• Especially useful if histologic findings are ambiguous (Comfere 2018; Vidal 2018)
Introduction

• Immunohistochemical studies can lack usefulness if:
 – The infiltrate overall is scant
 – A large reactive component is present which masks the neoplastic cells

• Large studies have shown false negative rates of 23% (Smoller 1995)
Molecular Diagnostics

• Much attention has been focused on the role of PCR or Southern blot analysis for the detection of clones.

• Malignant lymphocytic processes are characterized by the presence of a single clone, whereas reactive infiltrates are polyclonal.
Molecular Diagnostics

- Southern blot analysis initially thought to be gold standard
 - Cannot be performed on paraffin tissues
 - Sensitivity of this analysis is low especially in context of high reactive background (i.e., early MF)

- Replaced by PCR analysis
Molecular Studies-A Word about High Throughput Sequencing

- Complete sequencing of the CDR3 region (encodes TCR beta and TCR gamma)
- Quantify number of clones, proportion of specific clones, and sequences of clones
- More sensitive and specific than current PCR methods (Sufficool 2015)
Molecular Studies-A Word about High Throughput Sequencing

• May have greater predictive abilities for unfavorable clinical outcomes in early disease
 – Tumor clone frequency may be predictive of aggressive later disease (Kirsch 2015, de Masson 2018)

• Expensive (Fujii, 2019)
Molecular Diagnostics

• Reactive conditions have had numerous documentations of clonality
 – Pityriasis lichenoides et varioliformis acuta and pigmented purpuric dermatitis are two well documented conditions (Dereure O 2000; Crowson 1999)
Problems with Use of PCR as Ancillary Test

• No standardized methodology existed prior to BIOMED-2
 – PCR analysis at different institutions could not be directly compared

• Positive and negative studies among neoplastic and reactive conditions had not been directly compared and correlated with clinical outcome

• Positive results for reactive conditions in T cell clonality analysis were high (25-64%, Thurber 2007)
Molecular Diagnostics

• A standardized series of primers and protocols was developed in Europe for ease of inter-laboratory comparisons (BIOMED-2 collaborative study)

• The TCR gamma (TCRG) gene locus is most often targeted
Molecular Diagnostics

- Using new standardized protocols, a high rate of rearrangements was reported in T cell malignancies in general (89% TCRG, 94% TCRB, van Dongen 2003)
Initial Studies-dual TCR PCR

• To maintain the high level of sensitivity in this analysis, and increase the specificity, we elected to examine analysis of TCRG gene rearrangements via dual PCR

• This entailed examination of two or more biopsies of suspicious skin lesions via PCR
 – Sequential lesions over time or multiple biopsies performed at the same time
Dual TCR PCR (Thurber 2007)

• 46 patients were studied overall (retrospective study)
• 10 patients had unequivocal diagnoses of MF on clinical and histologic grounds
• 18 patients had inflammatory conditions (i.e., psoriasis, eczema, pigmented purpuric dermatitis, arthropod bite reaction, etc.)
Dual TCR PCR

• 18 patients had lesions that could not be initially classified (indeterminate), but were found to be either MF or inflammatory dermatoses (ID) after follow up of 12-136 months
Dual TCR PCR

- 5 mm punch biopsies were employed, and most cases were of patients who had had at least 2 biopsies performed at the same time.
- Using established BIOMED-2 protocols and primers for TCRG, virtually all V-J combinations can be assessed.
Dual TCR PCR

• Gene scan analysis allows PCR products of different sizes to be compared
Results

<table>
<thead>
<tr>
<th>Identical TCRG</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unequivocal MF</td>
<td>8/10 (80%)</td>
<td></td>
</tr>
<tr>
<td>Indeterminate-MF</td>
<td>11/13 (84.6%)</td>
<td>19/23 (82.6%)</td>
</tr>
<tr>
<td>Unequivocal ID</td>
<td>0/18 (0%)</td>
<td></td>
</tr>
<tr>
<td>Indeterminate-ID</td>
<td>1/5 (20%)</td>
<td>22/23 (95.7%)</td>
</tr>
</tbody>
</table>
Dual TCR PCR

• In 2/18 patients with unequivocal inflammatory dermatoses, one biopsy yielded a clone; however, no patients with unequivocal inflammatory dermatoses had identical clones.

• The lack of an identical clone can be a powerful indicator of a reactive process (specificity 95.7%).
Limitations of Initial Study

• Sensitivity of test regarding early MF lesions was not as high as one would want, even with dual TCR PCR (82.6%)

• Number of both types of lesions, but especially inflammatory dermatoses studied, is small
Role Of TCRB

- TCRB primers and protocols available
 - Not used as often
 - Greater number of recombinations
 - Greater chance that primer combinations may not cover all possibilities
TCRB

- In initial BIOMED-2 protocol studies, TCRG rearrangement rate=89% and TCRB rearrangement rate=94%\(^4\)
- Also reported that addition of TCRB study increased clonality detection to 94% when fresh/frozen samples are used (Bruggemann 2007)
TCRG/TCRB Comparisons

• Interested in understanding if addition of TCRB to a negative TCRG study could increase sensitivity in early MF (Zhang 2010)
TCRB Study in MF/ID

- We studied 69 samples from MF patients and 133 samples from patients with inflammatory dermatoses (ID) (Zhang 2010)
- In most cases of MF TCRG was performed first (usually as part of routine testing) and TCRB was added as part of the study
- Follow up available for 80 patients (median 30.5 months)
TCRG/TCRB Results

<table>
<thead>
<tr>
<th></th>
<th>Positive</th>
<th>Negative</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCRG</td>
<td>63.8% (44/69)</td>
<td>36.2% (25/69)</td>
<td>16.5% (22/133)</td>
<td>83.5% (111/133)</td>
</tr>
<tr>
<td>TCRB</td>
<td>63.8% (44/69)</td>
<td>36.2% (25/69)</td>
<td>16.5% (22/133)</td>
<td>83.5% (111/133)</td>
</tr>
<tr>
<td>TCRG and TCRB *
(with concordant results)</td>
<td>49.3% (34/69)</td>
<td>50.7% (35/69)</td>
<td>6.8% (9/133)</td>
<td>93.2% (124/133)</td>
</tr>
<tr>
<td>TCRG or/and TCRB
(at least one)</td>
<td>78.3% (54/69)</td>
<td>21.7% (15/69)</td>
<td>26.3% (35/133)</td>
<td>73.7% (98/133)</td>
</tr>
</tbody>
</table>
TCRG/TCRB Results

<table>
<thead>
<tr>
<th></th>
<th>TCRG (positive/total)</th>
<th>TCRB (positive/total)</th>
<th>TCRG and TCRB (positive/total)</th>
<th>TCRG or TCRB (positive/total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>3/10 (30%)</td>
<td>6/10 (60%)</td>
<td>2/10 (20%)</td>
<td>7/10 (70%)</td>
</tr>
<tr>
<td>T2</td>
<td>10/11 (90.9%)</td>
<td>7/11 (63.6%)</td>
<td>7/11 (63.6%)</td>
<td>10/11 (90.9%)</td>
</tr>
<tr>
<td>T3</td>
<td>11/15 (73.3%)</td>
<td>9/15 (60%)</td>
<td>9/15 (60%)</td>
<td>11/15 (73.3%)</td>
</tr>
<tr>
<td>T4</td>
<td>6/8 (75%)</td>
<td>6/8 (75%)</td>
<td>6/8 (75%)</td>
<td>6/8 (75%)</td>
</tr>
</tbody>
</table>
Summary of Results

• When used alone, sensitivity and specificity for TCRG and TCRB are nearly identical
• If both tests have to be positive for a positive result, specificity is maximized (93%) at the expense of sensitivity (49%)
Summary of Results

• If either test can be positive for a positive result, sensitivity is increased to 78% but specificity drops to 73%
Results as a Factor of T stage

• Adding TCRB to TCRG is helpful in confirming MF at stage T1, but does not augment the diagnosis at other stages (T2-4)
Proposed Algorithm for Use of TCRB in a Clinical Context

• Pre-test probability measures how likely it is that the patient has MF before the clonality assay is run

• Addition of TCRB not useful if pre test probability is very low (obviously NOT MF) or very high (obviously MF)
Proposed Algorithm for Use of TCRB in a Clinical Context

• If pre-test probability is moderate to high, and TCRG is run first and is negative, a positive TCRB can be confirmatory of MF

• If pre-test probability is low to moderate, and TCRG is run first and is positive, a positive TCRB can be confirmatory of MF

• Maximizes the role of TCRB in a clinical context
Case 1

- 43 year old man with 8 year history of asymptomatic red patches on BLE, arms and trunk
- The clinical differential diagnosis includes nummular eczema, MF, irritant dermatitis
- On examination, small coin-shaped lesions, primarily on the upper thighs
- Clinical suspicion for MF is low
Case 1

- Additional clinical history revealed that the patient had been using topical steroids
- This was stopped and the patient rebiopsied two weeks later
BIOPSY 2
Biopsy on topical therapy (biopsy 1)

Biopsy off topical therapy (biopsy 2)

Biopsy off topical therapy (biopsy 3)

Single peak in V9 in same location in all three biopsies
Case 2

- Male with rash, suspicious clinically for mycosis fungoides
- Two biopsies are taken
Additional History

• The patient was newly diagnosed with HIV
• The rash was evaluated by our cutaneous oncology expert and deemed clinically to not be compatible with mycosis fungoides
Negative clonality assay
Case 3

• Male with rash on arm, suspicious clinically for mycosis fungoides
Biopsies 1 and 2 each have a single identical clone in the V9 region.

The patient had three more biopsies with identical histologic features and identical clonality results.
Granulomatous MF

• Rare but well defined variant of MF, thought to be a granulomatous infiltrate obscuring the otherwise defined features of MF
• Can be difficult to diagnose on morphology alone
• Dual TCR PCR can be very helpful in confirming the diagnosis
Cutaneous B Cell Lymphoma

- Rarer than T cell lymphomas (MF)
- Can be difficult to distinguish low grade B cell lymphomas (follicle center lymphoma and marginal zone lymphoma) from pseudolymphoma
Cutaneous B cell Lymphoma

• Immunohistochemistry
 – Cutaneous FCL differ from nodal FL in that bcl-2 and CD10 are often not expressed
 – In MZL, light chain restriction is often difficult to demonstrate via in situ hybridization/immunohistochemistry on paraffin embedded tissues
Molecular Diagnostics

• PCR analysis targets the V and J constant regions of the immunoglobulin heavy chain

• Lack of standardization and inability to compare protocols limit usefulness of this approach (range of positivity in literature varied from 34% to 85% in lymphomas) (Morales 2008)
BIOMED-2 Protocols

• Designed to have wide analytical approach to IgH rearrangements
• Had separate protocol to cover IgK and IgL rearrangements
• Also designed primers to detect t(14;18)
• 41 primers developed overall
BIOMED-2 Protocols

• Highly sensitive and specific for B cell malignancies

• Concentrated primarily on nodal lymphomas, and primarily on frozen/fresh tissues
BIOMED-2 Protocols to test Cutaneous BCL

• We elected to examine the ability of these protocols to detect FCL and MZL using well established patients with lymphoma and FFPE tissues (Morales 2008)

• IgH, IgK and IgKde (immunoglobulin kappa deleting element) were targeted
The Initial Study

• 26 patients overall with lymphoma, 15 with MZL, 11 with FCL
 – Well characterized patients with follow up times from 24-64 months
• 23 patients with pseudolymphoma were selected
The Initial Study

<table>
<thead>
<tr>
<th></th>
<th>Cases positive for clone (Combined IGH and IGK) (%)</th>
<th>Cases positive for IGH alone (%)</th>
<th>Cases positive for IGK alone (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBCL</td>
<td>22/26 (85)</td>
<td>18/26 (69)</td>
<td>17/26 (65)</td>
</tr>
<tr>
<td>MZL</td>
<td>12/15 (80)</td>
<td>11/15 (73)</td>
<td>9/15 (60)</td>
</tr>
<tr>
<td>FCL</td>
<td>10/11 (91)</td>
<td>7/11 (64)</td>
<td>8/11 (73)</td>
</tr>
<tr>
<td>Benign lymphoid infiltrates</td>
<td>1/23 (4)</td>
<td>1/23 (4)</td>
<td>None</td>
</tr>
</tbody>
</table>
Initial Study

• The BIOMED-2 protocol allowed for high sensitivity (85%) and specificity (96%) in this context
• Higher than previously reported detection rate of 56% (Lukowsky 2006)
• Subsequent reports showed similar findings (Felcht 2011)
Addition of IgK to IgH analysis

- Addition increased clonality detection rate from 69% to 85% in biopsies of CBCL
- In FCL patients, clonality detection with IgK (73%) is higher than with IgH (65%)
- May be due to lack of somatic hypermutation in IgK gene locus
The Role of Testing Multiple Biopsies

• We next sought to examine whether multiple biopsies were helpful in cementing the diagnosis of lymphoma in CBCL (Fujiwara 2012)
Multiple Biopsies

• 20 patients with CBCL were studied who had two or more biopsies
• 16 had two or more sites biopsied, either at the same time point or at different time points
• 4 had the same lesion biopsied at different time points
Multiple Biopsies

• These were compared to 12 patients with benign infiltrates who had more than one biopsy performed
• Both IgH and IgK clonality assays were performed
• Sequencing was performed in positive cases
Multiple Biopsies

• In some cases with reduced amplification in one of the paired samples, patient specific primers were generated from a positive clonality study to look for clones in the other sample
Results

• Positive clone found in 19/20 patients with CBCL (all samples are counted)
 – 11/12 patients with MZL (92%); 8/8 patients with FCL (100%)
 – 2/12 patients with benign infiltrates also had positive clones (17%)
Results

• Identical clones found in 11/20 patients with CBCL (55%) (8 MZL, 3 FCL)

• No identical clones were found in patients with BLI (0/12)
Results

• When all data points are counted, sensitivity increases from 85% (last study) to 95% (this study)
• Specificity decreased from 96% (last study) to 83% (this study)
• Both patients with benign infiltrates who had clones identified had lupus
 – One showed no evidence of lymphoma upon clinical follow up
Results

• With identical clone identification, sensitivity dropped from 95% to 55% but specificity increased from 83% to 100%
• Results significantly affected by small numbers of samples
Practical Applications

• Dual clonality assays, in this context, somewhat increase specificity but significantly decrease sensitivity
• May be useful in the context of the rare reactive process that may show a clone
 – If repeat studies over time show negative clonality studies, may be more confident of a reactive process
Case 4

• 75 year old male with lesions on trunk suspicious for cutaneous lymphoma
Kappa ISH
Lambda ISH
Identical clone found in 2 different lesions
Summary

• It continues to be a challenge to distinguish between early lesions of mycosis fungoides and reactive infiltrates
• Dual TCR PCR provides excellent sensitivity and specificity
• High throughput sequencing is much better, but very expensive
Summary

• When is addition of TCRB assessment to TCRG assessment on single biopsies useful?
 – Add TCRB to a negative TCRG if MF is suspected
 – Add TCRB to a positive TCRG if MF is not suspected
Summary

• Low grade B cell lymphomas of the skin are difficult to diagnose as overlap with reactive infiltrates is relatively common
• IgH and IgK clonality assays can be extremely useful, especially in tandem
• Dual positivity in IgH or IgK is indicative of lymphoma
AMBASSADOR BRIDGE, DETROIT, MI