Dysplasia in Gastrointestinal Tract: Practical Pearls and Issues

Arief Suriawinata, M.D.

Professor of Pathology and Laboratory Medicine
Geisel School of Medicine at Dartmouth

Department of Pathology and Laboratory Medicine
Dartmouth-Hitchcock Medical Center
Low Grade Dysplasia of GI Tract

- Lack surface maturation
- Nuclear elongation, crowding, pseudostratification and hyperchromasia
- No loss of nuclear polarity
 - No features of high grade dysplasia
 - No glandular crowding
- No significant inflammation
- Clear transition to adjacent mucosa
High Grade Dysplasia of GI Tract

- Lack surface maturation
- Enlarged hyperchromatic nuclei
 - Dark nuclei with clumped chromatin, inconspicuous nuclei
 - Prominent, irregular nuclei with dark chromatin and irregular nucleoli
- Loss of nuclear polarity
- Mitoses, often atypical
- Cribiforming, micropapillary formation
- Luminal necrosis
- No significant inflammation
High Grade Dysplasia of GI Tract

R/O intramucosal carcinoma
- Complex, expansive, cribiform architecture
- Dilated dysplastic glands with necrosis
- Neutrophils in dysplastic glands
- Back-to-back gland
- Budding
- Small, irregular clusters
- Desmoplastic stroma
Reactive and Regenerative Changes of Glandular Mucosa

- Accelerated response to mucosal injury, inflammation, erosion or ulceration
- Often very atypical and mimic high grade dysplasia
- Large vesicular nuclei with macronucleoli
- Mitoses
Is p53 IHC useful?

P53 can be helpful but has limitations

– Nuclear accumulation in non-dysplastic epithelium (10%), LGD (40%), HGD (85%), adenocarcinoma (100%)
– Nuclear staining on regenerative epithelium
 • Lower intensity than dysplastic epithelium
Is p53 IHC useful?

P53 can be helpful but has limitations

– “null pattern” – complete loss of nuclear staining = biallelic loss of TP53 gene
Is p53 IHC useful?

- P53 IHC should be interpreted with caution.
- P53 IHC should not be interpreted as positive for (high grade) dysplasia without supportive cytologic or histologic features.
Contamination & Artifacts

• Contamination:
 – Duodenal mucosa to “esophagus/GEJ” biopsy
 – Adenomatous lesion to normal mucosa

• Artifacts:
 – Tissue edges
 – Fragmentation
 – Tangential cut
 – Cauterization

• Unfamiliar staining characteristics:
 – Consultation/second opinion slides
Esophagus

- Dysplasia vs regenerative changes of squamous mucosa
- Dysplasia in Barrett esophagus
 - Indefinite for dysplasia
 - Variants of dysplasia
 - Role of immunohistochemical stains
 - Treatment
 - Endoscopic mucosal resection
 - Mucosal ablation
Dysplastic vs Regenerative Squamous Mucosa

<table>
<thead>
<tr>
<th>Dysplastic SM</th>
<th>Regenerative SM</th>
</tr>
</thead>
<tbody>
<tr>
<td>No maturation</td>
<td>Surface maturation</td>
</tr>
<tr>
<td>Basophilia (LGD – basal layer, HGD – full thickness)</td>
<td>Basophilic basal layer</td>
</tr>
<tr>
<td>Disorganized proliferation</td>
<td>Vertical elongation of papillae “pseudoepitheliomatous hyperplasia”</td>
</tr>
<tr>
<td>Abnormal mitoses and scattered dyskeratotic cells</td>
<td>Basal mitoses</td>
</tr>
<tr>
<td>Pleomorphic, hyperchromatic nuclei with high N/C ratio</td>
<td>Monomorphic nucleoli with low N/C ratio</td>
</tr>
</tbody>
</table>
Barrett Esophagus

- Increasing esophageal adenocarcinoma incidence
- Reflux is a strong risk for adenocarcinoma
 - Large number of upper GI tract endoscopy
 - Barrett esophagus
- Risk factors for Barrett esophagus
 - Reflux >5 years, age >50 years, male, tobacco use, central obesity, Caucasian race
Barrett Dysplasia Assessment

<table>
<thead>
<tr>
<th>Components</th>
<th>Non-dysplastic BE</th>
<th>Dysplastic BE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface maturation</td>
<td>Proliferating, hyperchromatic, stratified nuclei - more at basal layers of glands</td>
<td>Proliferating, hyperchromatic nuclei at basal and surface layers of glands</td>
</tr>
<tr>
<td>Gland architecture</td>
<td>Round with little budding, surrounded by abundant lamina propria</td>
<td>Crowding, budding of glands. Cribiform glands, cystic dilation, necrotic luminal debris</td>
</tr>
<tr>
<td>Cytologic features</td>
<td>Nuclear enlargement and atypia in basal layers and in mucosa adjacent to squamous epithelium</td>
<td>Hyperchromatic, loss of nuclear polarity</td>
</tr>
<tr>
<td>Inflammation & erosion/ulcer</td>
<td>Proliferating, hyperchromatic nuclei at inflamed area or adjacent to erosion/ulceration</td>
<td>Hyperchromatic, atypia at and off the inflamed area</td>
</tr>
</tbody>
</table>
BE Negative for Dysplasia

- Surface maturation
- Normal architecture
- Hyperchromatic basal layer
- Nuclear polarity
BE Indefinite for Dysplasia

• Cytologic changes suggestive of dysplasia but with surface maturation
 – Hyperchromasia
 – Irregular nuclear membrane
 – Increased mitoses at basal layer
 – No loss of nuclear polarity

• “Garbage can” – unable to reach definitive diagnosis of dysplasia
 – Inflammation
 – Artifacts
BE Low Grade Dysplasia

- Lack surface maturation
- Glandular crowding
- No loss of nuclear polarity
 - No features of high grade dysplasia
- Minimal inflammation
- Some mimic tubular adenoma
 - “polypoid low grade dysplasia arising in Barrett esophagus”
BE High Grade Dysplasia

- Lack surface maturation
- Enlarged hyperchromatic nuclei
 - Dark nuclei with clumped chromatin, inconspicuous nuclei
 - Prominent, irregular nuclei with dark chromatin and irregular nucleoli
- Mitoses
- R/O invasive or intramucosal carcinoma
 - Cribiform architecture
 - Dilated dysplastic glands with necrosis
 - Ulceration
 - Neutrophils in dysplastic glands
 - Pagetoid spread into overlying squamous epithelium
Intramucosal Carcinoma

- Effacement of lamina propria
 - Single cells or small clusters
 - Desmoplasia
- Syncytial growth pattern
- Crowding & back-to-back glands
- Expansive glands
- Buddings & horizontal growths
Variants of Dysplasia

Basal crypt dysplasia
- Surface maturation
- Pleomorphic, large, hyperchromatic and irregular nuclei
- Increased N/C ratio
- Mucin depletion
- No clear surveillance guidelines – follow up according to LGD is suggested
- High interobserver variability
 - Low grade vs indefinite for dysplasia
Variants of Dysplasia

Gastric foveolar type dysplasia
- Lacks intestinal-type differentiation
- Abundant apical mucin
- Low or high grade dysplasia

Pyloric/cardia type dysplasia
- Lacks intestinal-type differentiation
- Densely packed small glands
Treatment

• Endoscopic mucosal resection:
 – Localized mucosal lesion
 – Challenges:
 • Cautery artifact
 • Lateral mucosal margin
 • Depth of invasion

• Radiofrequency ablation
 – Multifocal or extensive mucosal lesion
 – Challenges:
 • Buried metaplasia and dysplasia
BE follow up

<table>
<thead>
<tr>
<th>Dysplasia grade</th>
<th>Follow up</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative</td>
<td>3-5 years</td>
<td></td>
</tr>
<tr>
<td>Indefinite</td>
<td>12 months</td>
<td>Repeat 3-6 months after acid suppression treatment</td>
</tr>
<tr>
<td>Low grade</td>
<td>Every 6 months in the first year, then annually</td>
<td>Expert confirmation</td>
</tr>
<tr>
<td>High grade or intramucosal ca</td>
<td>Every 3 months in the first year, every 6 months in the second year, then annually</td>
<td>Expert confirmation</td>
</tr>
</tbody>
</table>

ACG 2015
Stomach

- Polypoid dysplasia = adenoma, low or high grade dysplasia
 - Intestinal type
 - Gastric foveolar type
- Flat dysplasia = dysplasia, low or high grade (similar to grading of BE)
Stomach

• Dysplasia in stomach polyps
 – Fundic gland polyp
 – Hyperplastic polyp
 – Pyloric gland adenoma

• Regeneration
Hyperplastic, Hamartomatous and Juvenile Polyps

<table>
<thead>
<tr>
<th>Polyp type</th>
<th>Etiology</th>
<th>Features</th>
<th>Dysplasia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperplastic ("inflammatory")</td>
<td>Unknown (?mucosal injury)</td>
<td>Hyperplastic, elongated and dilated epithelium with inflammatory and edematous stroma</td>
<td>Rare (2-5%), occur in larger polyp</td>
</tr>
<tr>
<td>Peuz-Jeghers</td>
<td>Germ line mutation - LKB1/STK11</td>
<td>Hyperplastic, branching and dilated foveolar epithelium with smooth muscle stroma</td>
<td>Uncommon</td>
</tr>
<tr>
<td>Juvenile</td>
<td>Germ line mutation – SMAD4/BM PR1A</td>
<td>Hyperplastic, elongated and dilated epithelium with inflammatory and edematous stroma</td>
<td>Rare (4-5%)</td>
</tr>
</tbody>
</table>

- Histologic classification can be difficult in small polyps
- Similar features in other parts of GI tract
Fundic Gland Polyp

- Sporadic and familial polyposis associated
- Sporadic polyp - do not progress to malignant polyp
 - Rare reported cases of adenocarcinoma arising in FAP-associated FGP
- Dysplasia is rare
 - FAP, MUTYH-associated polyposis (MAP), gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS)
Pyloric Gland Adenoma

- Closely packed pyloric type glands with cuboidal to low columnar epithelium
 - IHC: MUC6 +
- May contain low grade and high grade dysplasia
- Associated with atrophic gastritis
- Occur in stomach, gallbladder, duodenum and pancreatic duct
Regenerative Gastric Foveolar Epithelium

• Surface maturation
• Basophilic appearance
• Tortuous gastric pits with mitoses
• Large vesicular nuclei with macro nucleoli
• Often associated with reactive/chemical gastropathy or ulceration
Small Intestine

- Small intestinal dysplasia/neoplasm is rare, except in FAP, Lynch syndrome, or hamartomatous polyposis
 - Duodenal adenoma
 - Ampullary adenoma
- Direct extension or metastatic carcinoma
- Reactive and regenerative changes
Colon

- Polyps
 - Adenomas
 - Serrated polyps
- IBD-related dysplasia
- Reactive and regenerative changes
Adenomas

- Uncommon changes
 - Clear cell change
 - Squamous morules
- Pseudoinvasion
 - Prolapse in sigmoid or rectum
- High grade dysplasia
 - Cribiform
 - Loss of nuclear polarity
- High grade dysplasia/intramucosal carcinoma
 - Colonic mucosa lacks lymphatic channels
Serrated Polyps

- Hyperplastic polyps
- Traditional serrated adenoma
- Sessile serrated adenoma/polyp
- Sessile serrated adenoma with cytologic dysplasia

<table>
<thead>
<tr>
<th>Polyp type</th>
<th>Size</th>
<th>Follow up</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP</td>
<td><1cm</td>
<td>10 years</td>
</tr>
<tr>
<td>SSA</td>
<td><1cm</td>
<td>Complete polypectomy, 5 years</td>
</tr>
<tr>
<td>SSA</td>
<td>≥1cm</td>
<td>Complete excision, 3 years</td>
</tr>
<tr>
<td>SSA with dysplasia</td>
<td></td>
<td>Complete excision, 3 years</td>
</tr>
<tr>
<td>TSA</td>
<td></td>
<td>3 years</td>
</tr>
<tr>
<td>Serrated polyposis</td>
<td></td>
<td>Annual</td>
</tr>
</tbody>
</table>

US Multi Society Task Force on Colorectal Cancer 2012
Serrated Polyps Issues

- “Large left sided HP”
 - >1cm, look for features of SSA (crypt dilation, lack of neuroendocrine cells)
- “Left sided SSA”
 - If small (<5mm), consider reactive changes in HP
- Last resort - consider using the term “serrated polyp with features of SSA” or “serrated polyp, not further classified”
Colitis-associated Dysplasia

- Low grade dysplasia
 - Dysplasia involving surface without loss of nuclear polarity
- High grade dysplasia
 - Dysplasia involving surface with loss of nuclear polarity
- Indefinite for dysplasia
 - Active inflammation
 - No definitive low grade dysplasia
Regenerative Colorectal Mucosa

- Atypical regenerative epithelium adjacent to or in eroded benign polypoid lesions, mucosal prolapse, inflammatory bowel disease
- Surface maturation
- Basophilic deep crypts
- Low nuclear-cytoplasmic ratio
- Comparison with biopsies from other segments often helpful – baseline features
Other Dysplasia in IBD

- IBD patients can develop sporadic adenomas and serrated polyps
 - Endoscopic findings of “polyp”
 - No dysplasia in surrounding mucosa
 - Managed as sporadic polyps

- Atypical serrated lesion
 - “Indefinite for dysplasia” for close follow up
 - Serrated colitis-associated dysplasia

- Incomplete maturation
 - “Indefinite for dysplasia” for close follow up